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SUMMARY 

The rate of salt creep under small deviatoric stresses ( 5 MPaσ < ) is likely to be much faster 
than what usually is inferred from laboratory tests performed under higher mechanical loadings.  
Potential consequences regarding cavern-closure prediction are significant. 

 
1. SALT CREEP BEHAVIOR UNDER SMALL DEVIATORIC STRESSES 
 
1.1. Micro-mechanisms governing salt creep 

Hunsche (1984), Munson and Dawson (1984), Langer (1984), and Blum and Fleischman (1988) 
have discussed the micro-mechanisms that govern salt creep. Langer (1984) states that:  
 

Reliable extrapolation of the creep equations over long period of time and at 
low deformation rates can only be carried out on the basis of deformation 
mechanisms. The construction of a deformation-mechanism map is an essential 
preliminary.  

 
Such a map (adapted from Munson and Dawson, 1984) is presented in Figure 1. The governing 
creep-mechanism is indicated for each domain of the Temperature-Deviatoric Stress plane. Two 
rectangles also are drawn; the [ ] [ ]0 120°C 5 20MPa− × −  rectangle is the domain in which 
laboratory tests generally are performed. As will be seen, the [ ] [ ]0 120°C 0 5MPa− × − rectangle 
is the domain of temperature and deviatoric stress actually experienced in the vicinity of salt 
caverns during most of their lifetime (gas storage caverns, which experience large pressure 
changes, are an outstanding exception). Except for the upper part of the first rectangle, in which 
dislocation creep is the dominant mechanism, the micro-mechanism that governs creep in these 
two rectangles is poorly known. However, Spiers et al. (1990) suggested that, in the low stress 
range, pressure solution was an important mechanism (see Section 1.3). 

In other words, prediction of the mechanical behavior of a cavern is based on empirical data. 
Furthermore, as tests are performed in the 5-20 MPa deviatoric stress range, empirical creep 
laws inferred from laboratory testing must be extrapolated to the 0-5 MPa deviatoric stress 
range (the range of primary interest when considering cavern behavior), for which no or few 
actual data are available. 
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Figure 1. Mechanism Map (after Munson and Dawson, 1984). Stress and temperature 
conditions during the test described in Section 15 are represented by a star. 

1.2. Norton-Hoff Law and small deviatoric stresses 
 
Steady-state creep rates, as observed during laboratory tests performed in the 5- to 20-MPa 
range, often are fitted against the deviatoric stress. In the range of temperatures experienced in 
most salt caverns, the Norton-Hoff law captures the main features of the steady-state behavior 
of salt: 

 exp nQA
RT

ε σ⎛ ⎞= −⎜ ⎟
⎝ ⎠

 (1) 

where n belongs to the range n = 3-6. When the deviatoric stress is 10 MPaσ = , a typical 
steady-state strain rate is ( )10 1 -3 110  s  3 10  yrε − − −= × . When n = 3 is allowed, the (extrapolated) 

steady-state strain rate is when the deviatoric stress is 13 110  s  ε − −= 1 MPaσ = ; it is 
when the deviatoric stress is 16 110  sε − −= 0.1 MPaσ = . This last strain rate is exceedingly 

slow: after a period lasting 300,000 years, the cumulated strain is 310ε −= . Such slow strain 
rates cannot be observed in the laboratory. 

1.3. Norton-Hoff Law and cavern convergence computations 
 
Equation (1) holds for creep tests performed on cylindrical samples.  It needs to be generalized 
to 3D situations: 

 ( ) 1*
2

1 3 3
2

n

ij ij kk ij ijA J
E E
ν νε σ σ δ

−+
= − + s  (2) 
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where (* expA A Q RT= − );  sij is the deviatoric stress tensor and 2 / 2ij jiJ s s= is the second 
invariant of the deviatoric stress tensor. It is important to assess the consequences of this with 
regard to the mechanical behavior of salt caverns. Consider the case of an idealized spherical 
cavern of radius a in an infinite elasto-visco-plastic medium. The geostatic pressure at cavern 
depth is . At time , the cavern is submitted to an internal pressure P∞ 0t = cP P∞< , which, later 
(t > 0), is kept constant. In a 1000-m deep brine-filled cavern, 10 MPacP P∞ − =  is typical. 
After the initial rapid pressure change, the cavern experiences a transient phase during which 
the deviatoric stresses decrease, and, after a (long) period of time, steady state is reached. The 
steady-state volume-loss rate and the steady-state deviatoric stress distribution can be computed 
easily (see Appendix A): 

 

 (3 3*
2 2

SS

NH n

c
V A P P
V n ∞ )⎡ ⎤= − −⎢ ⎥⎣ ⎦

 (3) 

 ( )
3/

2
33

2SS

n
NH

c
aJ P P

n r∞
⎛ ⎞= − ⎜ ⎟
⎝ ⎠

 (4) 

Formula (4) links the deviatoric stress ( 23J ) to the pressure difference ( ) and to the 
distance to the cavern centre ( r ).  It is interesting to compare this “steady-state” stress 
distribution to the “elastic” stress distribution that is observed immediately after the beginning 
of the transient phase, when the internal pressure 

cP P∞ −

cP P∞<  is applied: 

 ( )
3

2
33
2

EL

cSS

aJ P P
r∞

⎛ ⎞= − ⎜ ⎟
⎝ ⎠

 (5) 

First, the perturbation to the natural isotropic state of stress penetrates much deeper inside the 
rock mass for the steady-state solution. For example, when 3,n = at a distance from the 
cavern centre, the “elastic” deviatoric stress is divided by 8 (compared to its value at r = a), and 
the steady–state deviatoric stress is divided by 2. At a distance 

2r = a

3 ,r a= they are divided by 27 
and 3, respectively. Significant deviatoric stresses are present in a much larger rock volume 
when the steady-state stress distribution is compared to the elastic distribution.  

Second, the deviatoric stress at cavern wall ( r a= ) is divided by n when the steady-state stress 
distribution is compared to the elastic distribution. Deviatoric stresses in the salt mass  are 
small when the steady-state distribution is reached. For instance, in a 600-m-deep cavern, 

; when n = 3, the maximum deviatoric stress in the rock mass is 3 MPa. (It is 
1.8 MPa when n = 5). 

6 MPacP P∞ − =

It can be inferred from these conclusions that studying the effects of small deviatoric stresses 
(and slow strain rates) is especially important when assessing cavern steady-state creep closure. 

1.4. Pressure solution creep 

When fitted against the results of laboratory tests performed in the domain 
, the Norton-Hoff law –- is purely empirical in origin.  Extrapolation 

of the Norton-Hoff law to a range of stresses smaller than the range of stresses against which 
this law was fitted cannot be substantiated by micro-mechanism analysis.  

[ ] [0 100°C 5 20MPa− × − ]
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However, Spiers et al. (1990) observed that pressure-solution creep, an important deformation 
mechanism in most rocks in the Earth’s crust, is especially rapid in rock salt. Theoretical 
findings strongly suggest that, for this mechanism, the relation between deviatoric stress and 
strain rate is linear. The strain rate observed during laboratory tests is the sum of the strain rates 
generated by two mechanisms, dislocation creep and pressure solution creep. At low 
temperature ( ), dislocation creep is the dominant mechanism in the domain 100°CT <

10 MPaσ > ; when smaller deviatoric stresses are considered, pressure solution creep usually is 
dominant. In fact, as underlined by Uraï and Spiers (2007, p.151): 

“... the relative importance of each process depends strongly on variables such 
as temperature, confining pressure, grain size, solid solution impurities and 
second phase content and, importantly, on the presence of sufficient water in 
grain boundaries to enable solution-precipitation phenomena”.)   

According to Uraï and Spiers (2007), the Norton-Hoff (N-H) law typically should be modified 
in such a way that 

 3exp expnQ b QA
RT TD RT

ε σ
⎛ ⎞⎛ ⎞= − + −⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
σ  (6) 

where b and Q R are constants, and D is the grain diameter. One practical consequence of this 
is that the creep rate experienced by a salt sample submitted to small deviatoric stresses should 
be much faster than that extrapolated from the Norton-Hoff law ( 0b = ) fitted on standard 
laboratory tests (i.e., performed in the range 5-20 MPaσ = ). 

1.5. Laboratory evidence 

The effect of small deviatoric stresses (hence, small creep rates — say, 10 110 sε − −<  ) have not 
been investigated widely in the literature, despite their role with regard to geological 
deformations. Hunsche (1988) performed 10-day long tests during which an axial load of 0.57 
MPa was applied on a cylindrical sample; the observed strain rate typically was 12 17 10 .s− −×  In 
fact, accurate long-term creep tests are possible only when there is accurate measurement of 
sample length change (10-3-10-2 micrometer), when the applied load remains constant, and, 
importantly, when the temperature and hygrometry experience very small changes for the 
duration of the test. Bérest et al. (2005) describe such experiments, performed in deep 
underground galleries (to take advantage of stable temperature and hygrometry), using 
extremely accurate sensors and dead-weight loading. They found (Figure 2) that a typical 
steady-state strain rate when the applied stress was 0.108 MPaσ = was 

 12 11.4 10  sε − −= ×  (7) 

This rate is exceedingly slow, but it is much faster — by 3 or 4 orders of magnitude —than the 
creep rate that is extrapolated from tests performed on the same natural rock salt when a 
deviatoric stress 5 20 MPaσ = −  is applied on a sample. 

5 
 



 
Figure 2.  A 22-month-long creep test performed on a salt sample. When the applied stress 
was 0.108 MPa, the axial creep rate of the was 12 11.4 10 s− −× — a surprisingly fast rate. 

1.6. Field evidence 

Numerical computations currently are performed to assess the creep closure rates of salt caverns 
and cavern stability. These computations use constitutive laws that are based on empirical data 
provided by laboratory tests. In fact, as explained in the following, the deviatoric stresses 
experienced in a salt mass in the neighborhood of a salt cavern are significantly smaller than the 
deviatoric stresses applied to salt samples in the laboratory. The constitutive laws fitted against 
the results of laboratory tests may be irrelevant when predicting the behavior of a salt cavern.  

In this context, field evidence could be helpful. 

Unfortunately, it is difficult to compare any computational result to the actual behavior of a salt 
cavern other than in a qualitative manner. Bérest et al. (2006, p.94) observed that: 

In most cases, it is difficult to measure cavern shape or volume changes 
directly. In fact, during most mechanical tests, what is measured is the 
evolution of the wellhead pressure or the flow rate of the expelled [liquid] 
volume. The evolution of these quantities is influenced not only by purely 
mechanical effects; factors such as cavern brine warming (or cooling), 
additional dissolution, brine micro-permeation through the cavern walls and 
fluid leaks through the casing also play roles. In many cases, for instance, the 
effects of cavern brine warming are more significant than the effects of cavern 
creep closure. For this reason, interpreting an in situ “mechanical” test is 
often difficult. 

In fact, few well-documented in situ tests are available. For this reason, monitoring cavern 
behavior does not provide strong evidence for (or against) any type of governing mechanism in 
the low-stress range. However, some interesting attempts have been made by Breunesse et al. 
(2003), who interpreted subsidence data above salt caverns, and by Campos de Orellana (1998), 
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who examined pillar creep rates in a dry salt mine. A comprehensive discussion of available 
evidence, both from laboratory experiments and field observations, can be found in Uraï and 
Spiers (2007).  

1.7. Conclusions 

The findings at this stage can be summarized as follows. 

1.  Strong theoretical and experimental evidence supports the view that 
“pressure solution” plays a significant role, especially when deviatoric 
stresses are small (say, smaller than 5 MPaσ = ). 

2.  Simple calculations prove that the cavern closure rate strongly is influenced 
by phenomena affecting rock salt in the stress domain 5 MPaσ < .  

3.  Only few creep tests have been performed on natural salt samples in the 
range of stress of interest ( 5 MPaσ < ). 

4.  The cavern-creep closure rate might be significantly faster than predicted 
by the Norton-Hoff law. This is especially true in shallow caverns. 

5.  In situ tests performed on salt caverns are not precise enough to confirm 
Statement 4. 

2. COMPUTATIONS 

2.1. A simple “bi-linear” model  

The Norton-Hoff, or power, law can be represented in the ( log logε σ− ) plane by a straight 
line with a slope of n. This curve correctly fits data in the domain 5 20 MPaσ = − , but it 
widely under-estimates the actual creep rate in the domain 5 MPaσ < . It is suggested that the 
mechanical behavior be described by the following bi-linear law: 

 *:       nS Aσ ε σ> =  (8) 

 *:       S Bσ ε< = σ  (9) 

In other words, when deviatoric stress is large enough, the standard Norton-Hoff law ( ) 
holds; when deviatoric stress is small, the Newtonian law (

1n ≠
1n = ) for viscous fluids holds. For 

continuity, ( ) * * .nS A S B Sε σ = = =  

This bi-linear law clearly is simplistic. It would be more realistic to assume that the transition 
from Dislocation Creep to Pressure Solution is gradual. However, this bi-linear model allows 
for simple computations. The objective of this paper is to highlight the significance of small 
deviatoric stresses; precise prediction will be possible when the database is larger. 

Consider an idealized spherical cavern and steady-state creep closure: when the cavern is deep 
enough, the rock mass is divided in two zones. In the zone closest to the cavern, deviatoric 
stresses are large, and (8) holds. Farther from the cavern, deviatoric stresses are small, and (9) 
holds. The steady-state cavern closure rate can be computed easily (Appendix A): 

 ( ) ( )
( )

2 13 3 2 1 1
2 2 3 3

SS

nBL NHn

c
cSS

n SV VA P P n S
V n P P∞

∞

⎡ ⎤−⎧ ⎫⎡ ⎤= − − + − = + ×⎨ ⎬ ⎢⎢ ⎥ −⎣ ⎦ ⎢ ⎥⎩ ⎭ ⎣ ⎦ V⎥  (10) 
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For instance, n = 3, S = 1.5 MPa, cP P∞ − = 10 MPa and 1.7
BL N

SS SS

V V
V V

=
H

. Even when 

“reasonable” values of n and S are selected, the creep closure rate is significantly faster when 
the Norton-Hoff creep law is modified slightly to take into account the effect of small deviatoric 
stresses. 

The case in which S = 1.5 MPa is discussed in more detail on Figures 3, 4 and 5.  

The bi-linear law is drawn on Figure 3, which represents the decimal logarithm of the stress 
(σ , in MPa) applied on the sample versus the decimal logarithm of the axial strain rate (ε , in 

or ). When the applied stress is smaller than 1s− 1yr− 1.5 MPaS = , salt behavior is governed by 
(9). When the applied stress is larger than 1.5 MPaS = , salt behavior is governed by (8); 
several values of the stress exponent (n) of the Norton-Hoff (power) law are considered, n = 1 
to 5.  

On Figure 4, the decimal logarithm of the difference between geostatic pressure and cavern 
pressure, ( , in MPa, which is related simply to cavern depth through H [in meters] = 
0.01 ( ).), is plotted versus cavern steady-state closure rate (

cP P∞ −

cP P∞ − V V− , in or )  for 
various values of the exponent n of the power law.  

1s− 1yr−

On Figure 5, the decimal logarithm of cavern closure rate ( V V− ) is plotted against the decimal 
logarithm of the difference between geostatic pressure and cavern pressure ( ) in the case 
S = 1.5 MPa. The Norton-Hoff (N-H) constitutive law and the bi-linear (B-L) constitutive law 
are considered. The ratio between the N-H creep closure rate and the B-L creep closure rate is 

cP P∞ −

1.7,
SS

BL NH

SS

V V
V V

= when the cavern is 1000-m deep (or 10 MPacP P∞ − = ). It is 

 8,
SS

BL NH

SS

V V
V V

= when the cavern is 200-m deep (or 2 MPacP P∞ − = ): the difference between 

the two constitutive laws is strengthened when shallow caverns are considered. 

In this example, the threshold separating the two creep mechanisms is S = 1.5 MPa. This figure 
was selected as an example: at this time, there is insufficient information to substantiate such a 
choice. Figures 6, 7 and 8 correspond to the case S = 3 MPa. 
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Figure 3. The bi-linear creep model, S = 1.5 MPa. Various values of the power-
law stress exponent are considered. 

 
Figure 4. Cavern convergence rate versus cavern depth when the bi-linear creep 
model is considered. 
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Figure 5. Cavern-creep closure rate: Comparison between the Norton-Hoff and 
the bi-linear laws. 

 
Figure 6. The bi-linear creep model, S = 3 MPa. 
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Figure 7. Cavern convergence rate versus cavern depth when the bi-linear creep 
model is considered, S = 3 MPa. 

 
Figure 8. Cavern creep closure rate: comparison between the Norton-Hoff and 
the bi-linear laws, S = 3 MPa. 
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2.2. Numerical computations 

Numerical computations also were performed using LOCAS (Brouard et al., 1996). For these 
computations, a more realistic cavern shape was considered. EZ53, a 8000-m3 cavern at the Gaz 
de France Etrez storage site was selected. Its actual depth is 950 m, but the influence of depth 
was discussed and, computations were performed considering different depths (Figure 9): 

(Figure 10); (Figure 11); and 950 mH = 600 mH = 250 mH = (Figure 12).  The Norton-Hoff 
parameters  were  and . (The effect of temperature on creep rate was 
not considered.) Parameters of the bi-linear law were S = 3 MPa and  

3.1n = * 13 3.110 /MPa -sA −=
* 1210 /MPa-s.B −=

When the cavern depth is the difference between the Norton-Hoff law and the bi-
linear law is small — and probably undetectable through in situ tests. When the cavern is 
shallow, differences are more pronounced. When cavern depth is 

950 m,H =

250 m,H = the Norton-Hoff 
law predicts that the relative cavern closure rate is 45 10 /yrV V −= × ; it is 410 /yrV V −= when 
the bi-linear law is used.  

 
Figure 9. Numerical computations were performed at three cavern depths. 
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Figure 10. Cavern depth is 950 m. 

 
Figure 11. Cavern depth is 600 m. 
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Figure 12 – Cavern depth is 250 m. 
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APPENDIX A — CONSTITUTIVE EQUATIONS 

In the following we consider a spherical cavern of radius a, leached out from an infinite 
viscoplastic medium. Spherical symmetry is assumed. Steady-state has been reached. When the 
cavern is deep enough ( 2 /3cP P S∞ − > ), the rock mass is divided in two zones. In the zone closest 
to the cavern, or r < x, deviatoric stresses are large, or 23J S> . Farther from the cavern, or r > 
x, deviatoric stresses are small, and 23J S< . The mechanical constitutive law can be written as  

* 1
2 2

1 3 ( 3 )  when 3
2

n
ij ij kk ij ijA J s J

E E
ν νε σ σ δ −+

= − + S> , or r < x 

*
2

1 3  when 3
2ij ij kk ij ijB s J

E E
ν νε σ σ δ+

= − + S< , or r > x 

Continuity implies . * *nA S B S=

The equilibrium equation can be written 
2

r
r

r
rθ
σσ σ ∂

− = −
∂

 ,  

and the boundary conditions are 

( , 0)rr a t Pσ ∞< = −  

( , 0)rr ca t Pσ > = −  

( )rr Pσ ∞∞ = −  

( )u u r= is the radial displacement when spherical symmetry is taken into account: 

o When 23J S>  : 
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 ( ) (*1 2 n
rr rr rr

u A
r E θθ θθε σ νσ σ∂

= = − + −
∂

)σ  (11) 

 ( ) (
*1 1

2
n

rr rr
u A
r Eθθ ϕϕ θθ θθε ε ν σ νσ σ σ= = = ⎡ − − ⎤ − −⎣ ⎦ )  (12) 

o When 23J S<  : 

 ( ) (*1 2rr rr rr
u B
r E

)θθ θθε σ νσ σ σ∂
= = − + −
∂

 (13) 

 ( ) (
*1 1

2rr rr
u B
r E

)θθ ϕϕ θθ θθε ε ν σ νσ σ σ= = = ⎡ − − ⎤ − −⎣ ⎦ (14)When a steady-state solution is reach

2 0u u
r r
∂

+ =
∂

 

from which 2 2u a a r= can be inferred. (12) can be rewritten as 

2 *

3 2 2

n
ra a A r

r r
σ∂⎛= − −⎜ ∂⎝ ⎠

⎞
⎟  when 23J S>  

2 *

3 2 2
ra a B r

r r
σ∂⎛ ⎞= − −⎜ ⎟∂⎝ ⎠

 when 23J S<  

The first equation holds when r < x; the second equation holds when r > x. 

These two equations can be integrated with respect to r in the [ ],a x domain and in the 

[ ],x ∞ domain; from the second equation, it can be inferred that ( ) 2 3rr x P Sσ ∞= − + and 

( )3 3 23 1
2 2 3

n

c
tt

V a A P P n S
V a n ∞

=∞=∞

⎧ ⎫⎡ ⎤= = − − + −⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
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