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Abstract

Summary

Storage of natural gas in salt caverns had been developed mainly for seasonal storage, resulting in a
small number of yearly pressure cycles and moderate gas-production rates. The needs of energy traders
are changing toward more aggressive operational modes. Gas temperature changes and additional
stresses generated by high-frequency cycling in a storage cavern are discussed. It is proved that, when
short-period gas pressure cycles are performed, the thickness of the thermally disturbed zone at the
cavern wall is relatively small. Refined meshes of the disturbed zone are required when performing
numerical computations. The case of an actual cavern is discussed. In addition to the Munson-Dawson
constitutive law, “reverse” creep is considered. The no-tension and dilation criteria are used to discuss
numerical results. It is proved that tensile stresses may develop when cavern pressure is low. The
evolution of the state of stresses in the  1 23, 3I J plane; i.e., the “bumble-bee flight”, as suggested by

Kurt Staudtmeister and Zapf (2010) [1] is discussed, and it is proved that the dilation criterion is met at an
early stage.
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Introduction

Recent changes in the gas market tends to make natural-gas storage caverns operated with much more
frequent cycling compared to that in seasonal storage. This implies faster flow rates and shorter recovery
periods. This operation mode has also been considered for Compressed Air Storage (CAES) facilities.
Cavern stability must be assessed when high-frequency cycles are considered. This paper describes
some specific thermo-mechanical issues related to fast pressure and temperature changes.

1. Remarks on time and spatial scales — Meshing

1.1 Pressure/Temperature cycling

In this paper, we discuss the case of a gas-storage cavern. Cavern gas pressure is assumed to take a
sinusoidal form:

   sin          2P t P P t       (1)

where P is the average gas pressure, P is the amplitude of the pressure cycle, is the pulsation, and  is
the cycle period.
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Gas warms when its pressure increases and cools when its pressure decreases. In this section we
assume that the cycle period is short (Heat flux from the rock mass is neglected.), and the cavern
temperature is also sinusoidal:

   1( ) sin sinTT t T P t T T t
P

  

  

       
  

(2)

where T is the cavern average temperature, T is the amplitude of the temperature cycle, and

p vC C  is the gas adiabatic index.

Lestringant et al. (2010) [2] give the evolution of salt temperature as a function of radius, r , and time, t ,
in the case of an idealized spherical cavern:

 ( , ) , exp ( ) / 2 sin ( ) / 2salt salt salt salt
aT r t T T r t T T r a k t r a k
r

                      
(3)

where a is cavern radius, and saltk is the salt thermal diffusivity. ( -6 23×10  m /ssaltk  is typical.)

Example #1 — Idealized spherical cavern

Let’s consider a small spherical cavern of volume 3 ,V  4200 m with radius 10 ma  and average

temperature 10°C,T  that is submitted to daily sinusoidal pressure and temperature

variations, 10°C.T  The vertical geothermal gradient is taken equal to zero. Figure 1 shows the
temperature radial distribution around the cavern wall when the cavern pressure and temperature are
maximal. Lestringant et al.’s closed-form solution is compared to finite-element computations performed
using LOCAS software (Brouard et al., 2006 [3]). It appears that the steady-state distribution
corresponding to the closed-form solution is reached after a few cycles and that the thickness of the
thermally disturbed zone is approximately 1.5 m.

Example #2 — Cylindrical cavern

Let’s consider a much larger cylindrical cavern of volume 3 ,V  500,000 m radius 40 ma  and height

H 100 m, that is submitted to daily sinusoidal pressure and temperature variations, 10°C.T T   A
refined mesh composed of approximately 140,000 elements was designed to get a precise picture of the
temperature distribution around the cavern wall (Figure 2). The thickness of the disturbed zone, which is
not dependent on cavern size, still is approximately 1.5 m (5 ft) for this daily cycle. At minimum cavern
temperature, which is reached when gas pressure is minimum, it is interesting to note that temperature
distribution is not monotonous in the disturbed zone. There is a temperature peak in the salt that is above
average temperature and at a distance of approximately 70 cmr  (28’’) from cavern wall for this daily
cycle.
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Figure 1 – Example #1 - Small spherical cavern: Radial temperature distribution at the vicinity of
the cavern wall. Comparison between a finite-elements code and a closed-form solution.

Figure 2 – Example #2 - Large cylindrical cavern: Radial temperature
distribution at the vicinity of the cavern wall.
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Example #3 — Non-sinusoidal cycling:

Figure 3 shows radial temperature distribution when cavern pressure is minimal in the case of non-
sinusoidal loading with a cycling period of one day. The temperature distribution is similar to that in the
case of a sinusoidal cycle; in particular, the thickness of the thermally disturbed zone is 70 cmr  (28").

Figure 3 – Example #3 - Small spherical cavern: Radial temperature distribution at the vicinity of
the cavern wall, non-sinusoidal cycling.

Example #4 — Effect of cycling period

The effect of the cycling period on temperature distribution in the rock mass is illustrated in Figure 4. The
small spherical cavern considered in Example #1 was considered. Cavern temperature was cycled over
three different periods: one day, one week end one month. The radial temperature distribution is plotted
after 5 cycles when the cavern temperature, and cavern pressure, is the lowest. As can be inferred from
closed-form solution (3), the size of the disturbed zone increases with cycle period, or . Furthermore,
even when the period is relatively large, a temperature peak still can be observed. The thickness, r , of
the disturbed zone from the cavern wall to peak as a function of sinusoidal cycling periods is shown on
Figure 4. It can be inferred from formula (3) that, in this case, thickness r can be expressed as:

242.9×10 saltr k   (4)

where r is in cm, salt thermal diffusivity, saltk , in m²/s, and cycling period,  , in days.

From the former computations, it appears that the thermally disturbed zone in the vicinity of a cavern
submitted to daily pressure/temperature variations remains thin, even when the cavern is very large.
Furthermore, as large thermo-elastic stresses are triggered by temperature/pressure variations (see
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below), a very fine mesh of this disturbed zone is mandatory when finite-element or finite-difference
computations are performed.

Figure 4 – Example #4 - Small spherical cavern: Radial temperature distribution at the vicinity of
the cavern wall, effect of cycling period.

Figure 5 – Thickness, r , of the disturbed zone from the cavern wall to peak as a function of
sinusoidal cycling period.
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1.2 Rules of thumb

When performing numerical computations, including high-frequency cyclic loading, the following spatial
and time scales should be considered.

 Spatial scale — The thermally disturbed zone must contain at least several elements in the radial
direction. A convenient radial size for the largest elements is:

max / 5x r   (5)

Mesh elements should not be radially larger than maxx inside the annulus between the cavern wall

and an outer radius at a distance 2 r from the cavern wall.

For instance, with regard to the daily cycle, 70 cm,r   max 5 15 cm 1 2 ftx r    , and the outer

radius of the disturbed zone is 2 1.5 m (5 ft).r 

 Time scale — Because the size minx of the largest element at the cavern wall must be small, the

maximum time step, maxt , of the numerical computations should be consistent.

o For 2D computations, the time step must be such that

2
max max 4 saltt x k   (6)

o For 3D computations, the time step must be such that

2
max max 6 saltt x k   (7)

According to formula (4), such a rule holds for sinusoidal thermal loading, but it is relevant still when
non-sinusoidal thermal loading, maxt , is considered for 2D computations is a linear function of the
cycling period:

2

max 100 200salt

rt
k


   (8)

For instance, the maximum time step for 2D daily cycling should be max 200 0.02 day 23 min.t    

2. Thermoelasticity

Salt-temperature variations, saltT , induced by cavern-pressure cycling generate additional thermoelastic
stresses. These thermoelastic stresses overlap the stress field around the cavern. Closed-form solutions
exist when simple shapes are considered. Table 1 gives additional stresses due to temperature variation,

 saltT r , in the salt.
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Table 1 – Thermoelastic additional stresses for simple shapes.

Additional stress Spherical shape Cylindrical shape

Radial  rr r  3

2 I r
r


  
2a J r

r
  

 

Tangential  r    3 saltI r T r
r
       salt

a J r T r
r
     

 

Vertical  zz r  saltT r   saltT r 

where  1 ,salt salt saltE     ,salt saltE  are salt elastic parameters, salt is the coefficient of thermal

expansion of salt, and  I r and  J r are integrals defined as follows:

       2
r r

salt salt
a a

I r u T u du J r u T u du     (9)

3. Constitutive law for salt

It is difficult to determine which of the existing constitutive laws for rock salt is the most relevant when
considering fast cycling loading. In fact, as suggested by Zander-Schiebenhöfer (2010) [4], it may be
necessary to develop new laws based on appropriate laboratory tests.

It is likely that the selected constitutive law should incorporate transient creep and be temperature-
dependent. Munson and Dawson (1984) [5] suggested the well-known following model:

 

 

2*

2*
0

1 *

1 *

t

t

tij ij ij
e ss

t

F e
F

F e

 

  

 
  

 

 

 

 
 

 
  

when

when
(10)

     

 

2

*
0 10 2

1 exp 3 2 1

3

n

ss ss salt salt
salt

cT m
t w

QF A J E
RT

K e Log J

    

      

  
       

 
    

  

w =

(11)

Munson et al. (1996) [6] suggested a modified model that takes into account the onset of “reverse creep”
following a stress drop (which is somewhat equivalent to a rapid pressure build-up in a closed cavern). A
modified version of this law was proposed by Karimi-Jafari et al. (2005) [7] that allows for simple
computations:

   * *1 1 1
pp

t tF k        when (12)

Reverse creep appears when * ,tk  or 0.F  This modified version of Munson-Dawson model has 11

parameters: 0, , , , , , , , , ,A n Q R m K c p k   . Table 2 gives parameters given by Munson (1999) [8] for Avery
Island salt.
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Table 2 – Munson-Dawson parameters for Avery Island salt.

Parameter
IS UNITS US UNITS

Units Value Units Value

A /MPan-yr 0.74 /psin-yr 1.15×10-11

n — 5.0 — 5.0

Q R K 5032 Ra 9058

m ― 3 ― 3

w ― -13.2 ― -13.2

w ― -7.738 ― -7.738

0K /MPam-yr 7×10-7 /psim-yr 2.30×10-13

 ― 0.58 ― 0.58

c /K 0.00902 /Ra 0.00511

Parameters values for reverse creep are 1.1p  and 2.4k  (Karimi-Jafari et al., 2005 [6])

4. Stability — Failure criteria

When dealing with cycling loading and cavern stability, the onset of tensile stresses and salt dilation at
the cavern wall must be discussed.

4.1 Tension criterion

When tensile stresses develop at the cavern wall, there is a risk of salt fracturing and spalling. The
following two criteria are considered.

 No Tension — This criterion stipulates that no main stress must be tensile:

max 0  (13)

where max is the least compressive of the three principal stresses.

 No Tensile Effective Stress at the Cavern Wall — This criterion stipulates that the effective
tangential stress at the cavern wall must be negative:

0tt P   (14)

Where tt is the less compressive tangential stress. This criterion is much more demanding than the
“No-tension” criterion. It is not met when a gas-filled cavern is submitted to a fast and large pressure
increase. It must be noted that the relevance of this criterion has not yet been investigated fully.
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4.3 Dilation criterion

When shear stresses are large (compared to the mean stress), salt micro-fracturing and dilation take
place. These lead to an increase in permeability and a loss of rock strength. Dilatancy is accompanied by
a drastic permeability increase, a drop in wave speed, and an increase in acoustic emission. Two dilation
criteria are noted here.

 Spiers et al. (1988) [9] proposed a dilation criterion that uses the first invariant of the stress tensor, 1 ,I

and the second invariant of the deviatoric stress tensor, 2 .J This well-known dilatancy criterion is

written ( 1I and 2J in MPa):

2 1No dilation occurs when   -0.27 1.9J I  (15)

 DeVries. (2006) [10] proposed a criterion that distinguishes between a “compressive” state of
stresses (typically, σ3 < σ2 = σ1 < 0) and an “extensive” state of stress (typically, σ2 = σ1 < σ3 < 0):

1 1 0 0
2

2

( )
3 cos sin

mD I T
J

D


 





(16)

Where 1I and 2J are in MPa, 1 2 0 0, , ,D D T m    and are five empirical constants, 3 3ij jk kiJ s s s is the third

invariant of the deviatoric stress tensor, and ψ is the lode angle such that 3/2
3 2sin 3 3 3 2 .J J   For the

following computations, Cayuta salt parameters were selected (see Table 2).

Table 2 - Selected parameters for DeVries et al. (2006 [10]) dilation criterion.

Parameter 1D 2D n 0T

Value IS units 0.773 MPa 0.524 0.693 1.95 MPa

Value US units 112 psi 0.524 0.693 283 psi

5. Gas cavern thermodynamics

5.1 Real-gas equation-of-state

The real-gas equation-of-state is used to determine the relationship between temperature, pressure, and
density of the considered gas. This equation is defined as:

mPV Z RT
M

 (17)

wherem is the gas mass, M is the gas molecular weight, R is the universal gas constant, and
( , )Z Z P T is the gas compressibility factor. For a perfect gas, 1,Z  but it may be significantly different

for a real gas. For instance, the compressibility factor of Amarillo natural gas is plotted on Figure 6 as a
function of pressure and temperature.
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Figure 6 – Compressibility factor of a natural gas a function of pressure and temperature [after
SMRI Toolbox].

For coupled computations, it may be useful to approximate the compressibility factor of natural gases
using a quadratic equation:

    2 2
1 2 3 4 5, 1Z P T Z Z T Z T Z P Z P     (18)

where iZ are five gas-specific constants.

5.2 Energy balance

ATG (1986) [11] gives a differential equation inferred from the energy balance of the gas cavern. This
equation allows for computation of a gas-temperature rate.

 During an injection phase, the formula used in SCTS software can write:

 1               [Injection phase]c m
p e

v

q qdT T P d C T T
dt C T dt V V


 
          

(19)

where , , ,P T V  are the bulk gas pressure, temperature, volume and density of the cavern, respectively;

,p vC C are the gas specific-heat capacities, cq is the heat flux from the rock mass at the cavern wall, eT is

the temperature of gas entering the cavern, and mq is the mass flow rate of injected gas:

m
P T V Zq m m
P T V Z
 

     
 

   
 (20)

V V is cavern relative volume rate, or

= vp
cV V P    (21)
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where c is the coefficient of compressibility of the cavern, which depends on cavern shape and rock

elastic parameters; vp is cavern creep rate, which depends on loading history, temperature, cavern
shape and salt creep parameters.

 When a withdrawal phase is considered, the last term of equation (19) disappears, as it represents
the change in gas cavern energy due to the gas flow entering the cavern, a term which vanishes
during gas withdrawal because the temperature of the gas flowing out from the cavern is assumed to
be equal to the cavern bulk temperature:

1               [Withdrawal phase]c

v

qdT T P d
dt C T dt V


 
        

(22)

The heat flux from rock mass, ,cq is small compared to the energy change related to the
compression/expansion of the gas which is the first term on the right hand side of equation (19).
However, the heat flux by conduction from the rock mass may play a significant role when cavern long-
term stability is considered. This heat flux can be expressed as follows:

salt
c salt

Tq K da
n


 

 (23)

where 6 W/m-KsaltK  is the salt thermal conductivity.

When considering gas cavern thermodynamics in SCTS, heat is assumed to be transferred by convection
at the cavern wall. The heat flux then is described using a convective heat-transfer coefficient :h

   
1

2 2 3

0.1  where w p salt
c salt w

r a

g T T C kTq k h T T h
r

 


 
      

   
(24)

where wT is the cavern-wall temperature,  is the coefficient of volume expansion of the gas, and  is
the gas dynamic viscosity. This formula is based on the assumption of free convection at a vertical
cylinder wall.

In LOCAS, the heat flux, ,cq is calculated directly from the temperature field [equation (23)] taking into
account the actual shape of the cavern.

6. Example — Natural-Gas-Storage Loading Scenario

6.1 Cavern shape

Figure 7 shows the shape and mesh of the considered cavern. Its volume is approximately 350,000 m3

(2.2 MMbbls), the casing-shoe depth is 585 m (1920 ft), the overall cavern height is 83 m (272 ft), and
cavern maximum radius is 50 m (164 ft). A chimney develops between the casing shoe and cavern roof,
which is 600-m deep (1968 ft).
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Figure 7 – Natural Gas Storage scenario, Cavern mesh.

6.2 Pressure/Temperature loading

A 400-day leaching period is considered, during which cavern pressure is decreased from geostatic
pressure to halmostatic pressure, and brine temperature is decreased from geothermal temperature at an
average cavern depth (24°C or 75°F) to 15°C (29°F) at the end of the leaching phase.

When leaching has been completed, the cavern is filled with Amarillo natural gas (Figure 5) and
submitted to a pressure-cycle period of 2 days  . Pressure amplitude is P = ± 4 MPa (± 580 psi), and

the average gas pressure ( P ) is halmostatic.

6.3 Cavern temperature

Figure 8 shows the evolution of cavern gas temperature. Temperature variations are large because of
large pressure variations. Low temperatures are observed at minimum pressure, because the cavern is
relatively shallow and the heat flux from the rock salt is small. When cycling, the average gas temperature
slightly increases and tends to a value close to the temperature of the gas injected into the cavern
( 40°CeT  in this case).
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Figure 8 – Evolution of cavern gas temperature.

6.3 Cavern stability

Figure 9 shows tangential stress evolutions at point A located at the bottom of the cavern chimney
(Figure 10). The tangential stress becomes tensile when cavern pressure and gas temperature are low
during the first cycles but becomes compressive after a few cycles.

Figure 9 – Evolution of the hoop stress at cavern roof during cycling.
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Figure 10 – Cavern roof.

Figure 11 shows a contour plot of the less compressive principal stress in the vicinity of the cavern
chimney and roof after 100 cycles, when gas pressure is at its minimum. Only local tensile stresses can
be observed on the chimney wall.

Figure 11 – Cavern roof.

Figure 12 and Figure 13 shows the area of evolution of the state of stress in the  1 23, 3I J plane at

point A (cavern roof) and point B (cavern wall). The “bumble-bee flight”, as suggested by Staudtmeister
and Zapf (2010) [1], can be observed. When cavern pressure is low, some dilation appears.
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Figure 12 – State of stress at cavern roof (point A) during cycling.

Figure 13 – State of stress at cavern wall (point B) during cycling.

Figure 14 shows a dilation contour plot in the vicinity of the cavern after 100 cycles, when gas pressure is
at its minimum. The DeVries criterion has been used. Significant dilatant zone can be observed at the
cavern roof.

Figure 15 is a close-up of the former contour plot in the vicinity of the cavern chimney.
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Figure 14 – Dilation criterion in the vicinity of cavern at minimum pressure after 100 cycles
[DeVries dilation criterion].

Figure 15 – Dilation criterion in the vicinity of cavern roof at minimum pressure after 100 cycles
[DeVries dilation criterion].
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7. Conclusions

It was proven that precise computations of temperature variations at cavern wall are possible provided
that time steps and elements sizes are correctly selected. Computation of temperature, strains and
stresses at the wall and roof of a salt cavern were performed. Munson-Dawson creep law and the same
energy balance as used in SCTS were taken into account. It is proved that in the case of a 600-m deep
cavern, several zones may experience relative large dilation when the cavern is submitted to high-
frequency cycling.
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