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SUMMARY  

 
Various thermo-mechanical phenomena generated by high-frequency pressure cycles in a salt cavern 
are discussed. A simple analytical model proves that the depth of penetration of temperature changes 
is a small fraction of the radius of the cavern. However, temperature changes generate large thermal 
stresses. These phenomena are compared to several failure criteria (Ratigan et al.’s (1991) dilation 
criterion, DeVries et al.’s (2005) dilation criterion, no-tension and no-effective-tension criteria). In 
several cases, spalling at the cavern wall resulting from thermal stresses must be expected. A 
simplified solution has been developed to predict the long-term cavern-creep closure rate in an 
idealized spherical cavern when cavern pressure is cycled daily between an upper and lower bound.  
 
INTRODUCTION 
 
Natural gas caverns used to be operated on a seasonal basis: gas was injected in summer and 
withdrawn in winter, when demand is larger. Recently, new operating modes have been used in which 
caverns experience more than one cycle per year, and high withdrawal rates are required. The interest 
in Compressed Air Energy Storage (CAES) also has been increasing. This type of storage is 
characterized by greater pressure variation rates and daily or weekly cycles. From the perspective of 
rock mechanics, new and challenging problems must be addressed. On one hand, the specific effect of 
numerous cycles on rock strength (fatigue) must be examined, requiring laboratory investigation. On 
the other hand, because gas or air experiences large changes in temperature, not enough time is left 
between two cycles to reach equilibrium with rock mass temperature, causing significant thermal 
stresses to develop at the cavern wall, the standard stability criteria (onset of dilation, no-tension, no-
effective-tension) must be revisited. 
 
Several papers have been dedicated to this issue. Bauer and Sobolik (2009) analyzed stresses and 
closure rate in a CAES facility (air pressure cycled daily) and in a natural gas storage facility (gas 
pressure movements more frequent and erratic than in a conventional seasonal storage). Staudtmeister 
and Zapf (2010) analyzed the onset of dilatancy in a gas storage facility experiencing fast and frequent 
gas movement. 
 
In this paper, the case of a daily-operated CAES facility is discussed. It is proved that daily evolutions 
of the stored air can be considered as almost adiabatic — i.e., air temperature changes are much larger 
than in a seasonal storage. Additional stresses generated by pressure and temperature changes during a 
cycle are discussed and compared to the Ratigan et al. (1991) dilation criterion, to the DeVries et al. 
(2005) dilation criterion and to the “no-effective-tension” criterion. A visco-plastic analysis also is 
performed. It is suggested that, after a great number of cycles, overall cavern behavior is the sum of a 
steady-state behavior plus a cyclic thermo-elastic behavior. The dilation criteria are discussed in this 
context. 
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1. AIR TEMPERATURE CHANGES 

1.1. Adiabatic air-temperature changes during 1-day cycles 
 
In a CAES facility, the cavern pressure is cycled daily,   0 cos ,a hP t P P t   2 ,  = 1 day.     
Air warms when its pressure increases and cools when its pressure decreases. However, heat exchange 
between cavern air and the rock mass restores thermal equilibrium. As a first approximation, the 
amount of air brought into (or withdrawn from) the cavern by the gas flowing into or from the cavern 
is neglected, and average air temperature, or ,hT is assumed to remain constant and equal to the rock 
temperature at cavern depth, or z: ( ) 12 0.03  (meters)hT C C z     is typical. These assumptions will 
be discussed in Section 1.3. When the cavern air temperature, or ,aT  is assumed to be uniform, the 
following heat-exchange equations hold: 
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   0 cosa hP t P P t   (3) 

 
The first relation describes the first principle of thermodynamics applied to the cavern air mass; 

( , )a a a aP T  is the state equation of air; the second relation is Fourier’s equation for heat transfer in 
the rock mass; and salt salt salt saltk K C  is the thermal diffusivity of rock salt. From dimensional 
analysis, two characteristic times can be inferred: 
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where a is cavern radius and .p
salt salt a aC C    For instance V = 64,000 m3, a = 25 m, 

100 m²/yr,saltk  4 years,ct  350 kJ/m -°Cp
a aC  when air average pressure is 5 MPa,hP 

6 32 10  J/m -°Csalt saltC    and 40.c c ct t t    Both ct and ct  are much longer than one day (the 
period of the pressure cycles) and, as a first approximation, heat transfer to the rock mass can be 
neglected. Note that this statement would be incorrect if the cavern were smaller or if the cycle period 
were longer than one day. Air transformations can be considered as adiabatic (i.e., no thermal 
exchange with the rock mass is considered), and 
 

 0p a a
a a a a

a P

T
C T P

T







 


   (4) 

When air is considered as a perfect gas, ,a a aP rT 1.4 and p v p v
a a a aC C C C r    , and the 

adiabatic path is defined as 
 

  
1

( ) (0) ( ) (0)a a a aT t T P t P




  (5) 

In the following,   0 cosa hP t P P t  , and 0P  is relatively small when compared to .hP  A linearized 
expression can be accepted: 
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where 0 0( 1) .h hT T P P    

Temperature measurements performed in the Huntorf cavern (Quast, 1983) seem to confirm that 
temperature variations approximately are adiabatic. To check the validity of the “adiabatic” 
assumption, the set of heat transfer equations was solved, and it was verified that the flux of heat 
through the cavern walls remains smaller than 2% of the additional amount of heat in the cavern, 
vindicating the “adiabatic” assumption.  
 
1.2. Changes in rock temperature 

Even if heat exchanges with the rock mass could be neglected when the heat balance at cavern scale is 
considered, changes in air temperature generate some rock temperature changes at the cavern wall, and 
the following problem must be considered: 
 

 salt
salt salt

T
k T

t


 


 (7) 

where 0 cossalt a hT T T T t   at the cavern wall, and salt hT T  in the far field. 

In the case of an idealized spherical cavern, the solution of this problem is 
 

 0( , ) exp ( ) / 2 cos ( ) / 2salt h salt salt

a
T r t T T r a k t r a k

r
               (8) 

Typical temperature changes during a half-period are shown on Figure 1. This solution is governed by 
two characteristic times: 2   is the period of the pressure variations; and 2

c saltt a k  describes 
the heat-transfer rate in the cavern. 
 

 
Figure 1. Temperature-change distribution in the rock mass as a function of radial distance to cavern 

center and time during a half-period. 0T is the maximum cavern temperature change. 
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Figure 2. Relative depth of penetration ( pr a ) of thermal perturbations in the rock mass as a function of 

the ratio between the period of gas pressure variations ( ) and the characteristic time for heat transfer 

toward the rock mass ( ct ). When considering a radius of a = 50 m, a time of 1 day,   53.3 10ct   , 

and the thickness of the warmed salt layer at the cavern wall is 65 cm.pr a 
 

 

Let pr  be the depth of penetration of temperature changes — i.e., the distance from the cavern wall 
such that temperature changes are ten times smaller than temperature changes at the cavern wall, or 

 exp / 2 0.1p salt
p

a
r a k

r
      (Figure 2). In a 1,000,000-m3 cavern, a = 50 m, τ =1 day, 

100 m²/yrsaltk  and 53.3 10ct   .  In this case, the depth of penetration is 1.013pr a  , and only a 
thin layer of salt at the cavern wall experiences large changes in rock temperature. However, the 
additional stresses generated by the temperature changes cannot be neglected, as will be seen in 
Section 2.  
 
1.3. Long-term evolution of cavern temperature 

It was noted that during a brief cycle of change (1-day), heat exchange with the rock mass can be 
neglected, and gas transformation can be considered as almost perfectly adiabatic. However, when 
long-term evolutions are considered, heat transfer through the cavern walls can no longer be neglected. 
Furthermore, only a relatively small part of the air gas is injected/withdrawn during cavern operation, 
and the average temperature of the cavern gas slowly changes; thus, more refined computations are 
needed. In the following, we consider a 1500-m deep cavern with rock temperature at depth of 57 °C. 
In this example, cavern is created in one year, and the cavern brine temperature is assumed to be equal 
to injected brine temperature, or 12 °C. (This assumption is extremely pessimistic; in fact, cavern brine 
is warmer than 12 °C). When leaching is complete, the cavern air temperature is assumed to be 12 °C. 
Later, the gas pressure is cycled daily between 0 18 4.5 MPahP P    and 0 18 4.5 MPa.hP P    
The heat-exchange equation can be rewritten as 
 

   p pa a salt
a a a a salt m a inj a

a P

T T
C T P V K da q C T T

T n




 

  
       

   (9) 

where mq is the gas-mass flow rate into or from the cavern, and injT is the temperature of the gas 
injected in the cavern; the exact state equation of air is used. LOCAS software (Brouard et al., 2006) 
was used to solve this equation.  
 
Results are presented in Figure 3. After the initial 1-year leaching phase, large daily fluctuations in gas 
temperature can be observed; however, the average gas temperature slowly increases and becomes 
progressively closer to the geothermal temperature. 
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Figure 3 . Temperature evolution in a 1500-m deep cavern. 

 
2. ADDITIONAL STRESSES GENERATED BY CHANGES IN ROCK TEMPERATURE 

2.1. Additional stresses generated by temperature changes 

In this section, we analyze the additional stresses generated by temperature changes. Obviously, in an 
actual cavern, these changes combine with stress changes generated by air pressure changes; these will 
be considered later. The system of equations to be solved in this situation is 

 0

 0

1
( ) 1 cos t 1

. 0         at cavern wall

0          at large distances from the cavern

salt

div

tr T
E E

n



     







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
 

 

 (10) 

where 54 10 /°Csalt    is the thermal expansion coefficient of salt. 
 
Spherical symmetry is assumed in the following, and the system can be rewritten as  
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

    

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

        
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( , ) 0                                                              rr t










  

 (11) 

The solution of this system can be written:  

       

 

3 2 2 3

3 2
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1 1 1
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The additional tangential stress at the cavern wall is especially large. It varies between   (a tensile 
additional stress reached when the gas temperature is lower, 0a hT T T  ) and   (a compressive 
additional stress reached when the gas temperature is higher, 0a hT T T  ), where 
 
  0 1saltE T     (13) 

When 0.25,  20 GPa,E  54 10 /°Csalt   and 0 15°CT   (a temperature change typically 
generated by a ± 1.5-MPa air-pressure change when the cavern depth is 725 m and the average air 
pressure is 8.7 MPahP  ), 17.3 MPa  — a large value. Radial and tangential stress distributions as 
a function of the distance to the cavern wall are represented in Figures 4a,b.  
 

 
(a) (b) 

Figures 4. Additional radial (a) and tangential stresses (b) divided by the maximum additional tangential 

stress ( 17.3 MPa  in the considered example) as a function of distance to the cavern center ( r a ) and 

time during a half-cycle. 
 
Additional radial stresses are small. The same cannot be said of additional tangential stresses, which 
are quite large in a narrow zone (width smaller than 3% of the cavern radius when the pressure-change 
period is one day). It can be expected that spalling will take place in this narrow zone. However, at this 
step, only additional stresses due to temperature changes were considered. A more general picture is 
obtained when stresses generated by pressure changes also are taken into account.  
 
2.2.  Additional stresses generated by temperature and pressure changes 

 We consider now the additional stresses generated by pressure changes. When the elastic behavior of 
a rock mass is assumed, the new problem is similar to the previous one. Equations are the same as 
those described in Section 2.2. In this case, however, T0 = 0 (no temperature change), and the 
constitutive equations and boundary conditions can be written as: 
 

 0( , ) cos       at cavern wall                               

                             at large distances from the cavern
rr h

rr

a t P P t

P

 
 

  
 

 (14) 

The solution of this problem is simple: 
 

 
   

   

3

0

3

0

, cos

1
, cos

2

rr h

h

a
r t P P P P t

r

a
r t P P P P t

r

 

 

 

 

        
  


         

 (15) 



8 
 

Because the thermo-elastic problem is linear, this solution simply can be added to the former solution 
to obtain the solution for the overall thermo-elastic problem: both pressure changes and the 
temperature changes generated by pressure changes are taken into account. 
 
The tangential stress is of special interest. It varies between  0( ) / 2hP P P P        (reached 

when the gas pressure is higher, 0a hP P P  )  and 0( ) / 2hP P P P        (reached when the gas 

pressure is lower, 0a hP P P  ). We consider here the case of a 725-m-deep cavern and 8.7 MPa.hP   
Temperature changes are assumed to follow the “adiabatic” path. Gas pressure and temperature 
fluctuate between 0 10.2 MPa,hP P  0 48.75°ChT T  and 0 7.2 MPahP P  , 0 18.75°C.hT T    
 
Figure 5a shows the tangential stresses; for ease of comparison, additional tangential stresses 
generated by temperature changes alone are provided in Figure 5b. Additional tangential stresses are 
modified (when compared to the case of temperature alone): they are lower, and additional 
compressive stresses are higher. Tensile stresses generated by low temperatures are somewhat 
lessened by compressive stresses generated by low pressures. The extent to which these stresses lead 
to damage in the salt wall is discussed in the next paragraph. 
 

 
(a) (b) 

Figure 5. Additional tangential stresses as a function of time when both pressure and temperature changes 
are taken into account (a) and when only temperature changes are taken into account (b). 
 
2.3.  Failure criteria 

In the following, two families of failure criteria are discussed. 
 
2.3.1. Dilation  

When shear stresses are large (compared to the mean stress), salt micro-fracturing and dilation take 
place. These lead to porosity, an increase in permeability and a loss of rock strength. In the literature, 
the following two dilation criteria have been proposed. 
 

 The Ratigan et al. (1991), Van Sambeek et al. (1993), VSR criterion is                                             

 2 10.27J I  (16) 

where 2 2ij jiJ s s is the second invariant of the deviatoric stress tensor, and 1 kkI   is the 

first invariant of the stress tensor. In the case of a spherical cavern, 2
23 ( )rrJ    and             

1 2rrI    . 
 

 The VSR criterion does not take into account the three main components of the stress tensor. 
(At the cavern wall, the radial  stress often is significantly less compressive than the two 
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tangential stresses, a situation opposite to the stress distribution in standard triaxial tests 
performed on rock samples.) Furthermore, it is overly pessimistic when mean stress is small.  

 The DeVries et al. (2005)  DV criterion suggests a more sophisticated formulation: 

 1 1 0 0
2

2

( )

3 cos sin

mD I T
J

D


 





 (17) 

where 1 2 0 0,  ,  ,   and D D T m  are five empirical constants, ψ is the Lode angle such that 
3/2

3 2sin 3 3 3 2J J   , and 3 3ij jk kiJ s s s  is the third invariant of the deviatoric stress 

tensor. In the case of a spherical cavern, 3
3 2( ) / 27rrJ     and ψ = -π/6 when 

0rr     (an inequality that often holds for a cavern whose pressure is smaller than the 
overburden pressure).  
 
o In the so-called “extension case”, the DV criterion is 

  

 2 1 1 0 0 22 ( / ) 3mJ D I T D      
 

o In the “compression” case, 0rr    , ψ = π/6, and the DV criterion is written as 
 

 2 1 1 0 0 22 ( / ) 3mJ D I T D      

 
In the case of Cayuta (NY) salt, DeVries (2006) suggests the following parameter values: 

1 2 0 00.733 MPa, 0.52,  1 MPa, 1.95 MPa, and 0.69.D D T m      
 
2.3.2. Tension 

When tensile stresses develop at the cavern wall, there is a risk of salt fracturing and spalling at the 
cavern wall. The following two criteria can be considered. 
 

 No Tension — This criterion stipulates that no main stress must be tensile. In the context of a 
spherical cavern, the radial stress always is compressive.  This criterion is written as 

0   
 

 No Tensile Effective Stress at Cavern Wall: This criterion, suggested by Brouard et al. (2007), 
stipulates that the tangential compressive stress at the cavern wall must be smaller than the 
cavern fluid pressure, or 

0P    
 
When this criterion is not met, there is a risk that hydro-fracturing takes place. This criterion is 
much more demanding than the “No-tension” criterion. It is not met when a gas-filled cavern 
is submitted to a fast and large pressure increase. It must be noted that this criterion is of 
purely theoretical origin; whether it actually applies to a real salt cavern has not yet been 
investigated fully. 
  

2.4.  Example 
 

Here, again, the case of a 725-m-deep cavern is considered:  the average gas pressure is Ph
 = 8.7 MPa; 

and the pressure and temperature changes are linked through the “adiabatic” relation, 

0 0( 1) .h hT T P P   The criteria are discussed in the most severe cases — i.e., when air pressure is 
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maximum or minimum. Figures 6, 7 and 8 display the dilatancy (VSR), no-tension and no-effective-
tension criteria in the pressure-cycle-amplitude versus temperature-cycle-amplitude plane. The dilation 
criterion is especially demanding when temperature and pressure are high; the opposite is true when 
the effective stress criterion is considered. In fact, the no-effective-tension criterion is by far the more 
demanding. 
 

 
Figure 6.  In the colored zone of the pressure-cycle-amplitude versus temperature-cycle-amplitude plane, 
the VSR dilation criterion is met. The “adiabatic” path is the path effectively followed by pressure and 
temperature during a cycle.  
 

 
Figure  7. In the colored zone, the no-effective-tension criterion is met (same example as Figure 8). The 
dotted line is the “adiabatic” path. This criterion is much more demanding than the no-dilation criterion. 
 

 
Figure 8. In the colored zone, the no-effective tension criterion is met (same example as Figure 8). The 
criterion is violated when cavern pressure (and temperature) are high. This criterion is more demanding 
than the no-dilation criterion. 
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2.5. Factor of safety 
 

For the two dilation criteria (VSR and DV), a factor of safety (FS) is defined (see Figure 9; 
FS = OB OA ). A state of stress ( 1 2,I J ) is safe when FS < 1.  

 
When the VSR dilation criterion is considered, FS is smaller than 1 (Figure 10a). The same example 
as in 2.4 is considered. When the “extensive” DV criterion is considered, FS is larger than 1 in a small 
layer at the cavern wall (Figure 10b).  
 
In conclusion, during a pressure cycle, both the no-effective-tension criterion and the DV-extension 
criterion are violated in a thin layer at the cavern wall, leading to cavern spalling. This effect is more 
pronounced in a deeper cavern and when pressure cycles are larger. 

 

 
Figure 9. Factor of safety. 

 

 
(a) (b) 

Figure 10, Factor of safety as a function of the distance to the cavern center at different times during a 
half-period (same example as before): (a) VSR criterion and (b) DV-extension.- 
 
3. VISCOPLASTIC  BEHAVIOR 

 
3.1. Asymptotic solution 
 
In the former paragraphs, thermo-elastic behavior of the rock mass was assumed. In this section, the 
visco-plastic behavior of rock salt is taken into account. A simplified constitutive behavior is 
considered: .nA   It is assumed that the overall behavior of the cavern is the sum of cyclic, elastic 
(or thermo-elastic) behavior plus steady-state Norton-Hoff visco-plastic behavior. The exponent of the 
power law is 3n  , and the Poisson’s ratio is 0.5  (no elastic volume change). The steady-state 
visco-plastic behavior is influenced by the average effect of the daily cycles. Computations are 
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detailed in the Appendix. This solution cannot be considered as exact, from a mathematical point of 
view, but it provides a first approximation of the effects of the cycles.  
 
An example is provided in Figure 11. A 725-m-deep cavern is considered. Temperature effects are not 
taken into account at this step. The upper curve represents the yearly volume loss rate as a function of 
caver n pressure when a steady state is reached. This rate is zero when the cavern pressure equals the 
geostatic pressure ( 15.9 MPaaP P  ). When cavern pressure is zero, the volume loss rate is slightly 

slower than 37 10  /yr.  The blue curve is interpreted as follows, assuming cyclic loading: the average 

gas pressure is 8.7 MPahP  the cycle amplitude is 0 3.7 MPaP  , and the cavern pressure varies 

between 0 5 MPahP P   and 0 12.4 MPa.hP P   
 

 
Figure 11. Volume loss rate as a function of gas pressure and gas-pressure changes. Average cavern depth 
is 725 m, and cavern pressure is cycled between 5 MPa and 12.4 MPa. Peff  is the (constant) cavern 
pressure for which the steady-state creep rate is the same as the average rate when the gas pressure is 
cycled between 5 MPa and 12.4 MPa 
 
Point A (respectively, C) provides the steady-state volume-loss rate when the cavern pressure is kept 
constant and equal to the minimum pressure, 5 MPaaP  ( respectively, equal to the average pressure, 

8.7 MPahP  ). Point B provides the average steady-state volume rate observed when the cavern 
pressure is cycled between 5 MPa and 12.4 MPa. As expected, this average steady-state volume rate is 
slower than the steady-state volume loss rate when cavern pressure is lowest (A); it is faster than the 
steady-state volume loss rate when cavern pressure is kept constant and equal to the average gas 
pressure (C) because the constitutive law is non-linear. 
 
In the former paragraph, thermo-elastic effects were not considered. In Figure 12, the relative volume 
loss rate of a 725-m-deep cavern as a function of cycle amplitude ( 0P ) is represented (average 

pressure during a cycle is 8.7 MPahP  ). The lower curve corresponds to the case when no thermal 
effect is considered; the upper curve corresponds to the case when it is assumed that pressure cycles 
generate temperature cycles according to the “adiabatic” path. The steady-state volume-loss rate is 
faster when thermo-mechanical effects are taken into account. 
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Figure 15. Relative steady-state volume-loss rate when thermal effects are taken 

into account (upper curve) and when they are not (lower curve). 

3.2. Dilation criteria 
 
In the 1 2,I J plane (the “invariant” plane also considered by Staudtmeister and Zapf, 2010), the VSR 

dilation criterion ( 2 10.27J I ) is represented by a straight line (Figure 12). The DV criteria are 

represented by two parabola-like curves. The upper curve is associated with a “compressive” state of 
stress ( rr     ); the lower curve is associated with an “extensive” state of stress 

rr      .  

 

 
Figure 12. Stress paths in the « invariant » plane  1 2, .I J Cavern depth is 725 m, and the average air 

pressure is 8.7 MPa. The VSR criterion, DV-extension criterion and DV-compression criterion are 

represented. Each segment represents the path followed by  1 2,I J when pressure is cycled between 

0hP P  and 0 .hP P  Different values of the amplitude of the pressure changes, from 0 0.1 MPaP  to 

0 2.5 MPa,P  are represented. 
 
The cavern is 725-m deep, and the average gas pressure is 8.7 MPa.hP   Fifteen different values of 

0 ,P  the amplitude of the gas pressure cycles, are considered from 0 0.1 MPaP  and 0 1.5 MPa.P   For 

each of these values, values of 1 2 and I J during a cycle are drawn. (The representative points move 

along a straight line.) As soon as 0 0.7 MPa,P  the (extension) DV criterion is violated. It can be 
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observed that the VSR criterion was never violated when a thermo-elastic analysis was performed. 
When visco-plastic effects are taken into account, it is violated as soon as 0 0.6 MPa.P    
 
4. CONCLUSIONS 
 
The main conclusions of this study are as follows. 
 
 Daily pressure cycles generate adiabatic temperature changes. 

 Pressure-temperature changes during a daily cycle generate large stresses in a thin layer at the 
cavern wall. Dilation and tension are likely to occur, leading to rock spalling at the cavern 
wall. 

 A simplified steady-state visco-plastic solution is proposed. It proves that the steady-state 
cavern closure rate is slower in a CAES facility than it is in a cavern whose pressure is kept 
constant and equal to the minimum pressure applied during a cycle. An “effective (constant) 
pressure” can be defined such that steady-state volume-loss rate generated by this pressure is 
the same as the average volume-loss rate generated by a cyclic pressure.   

 Numerical solutions raise a difficult problem, as the cycle period is much shorter than the 
period of time of interest (several decades) and thermal stresses are large in a very small 
domain at the cavern wall. 
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APPENDIX 

 
An idealized spherical cavern is considered. Cavern pressure is cycled between 0hP P  and 0 .hP P  

The cycle period is 2 .    Mechanical evolutions can be described by the following set of 
equations: 
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Equation (18) illustrates the equilibrium condition; (19) and (20) describe the visco-plastic behavior of 
the rock mass; (21) is the boundary condition at the cavern wall; and (22) is the boundary condition at 
a large distance from the cavern. It is assumed that, in the long term, the overall cavern behavior can 
be considered as the sum of an instantaneous elastic behavior (as described in Section 2.2) plus an 
average “steady-state” behavior: 
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When the Poisson’s ratio is taken as 0.5,  no volume change takes place, and 2 3/ ;u a a r    
Equation (20) takes the more simple form: 
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where ( )
2
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
 is the average value of r   during one period, and  
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Now, the following relation is integrated on one period, 2 :    
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When, for instance, n = 3, this relation is written as 
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This algebraic equation can be solved numerically, and the equilibrium equation 2 ( )r r f r r   
can be integrated between r a  and .r    
 


